シラバス
授業科目名 | 年度 | 学期 | 開講曜日・時限 | 学部・研究科など | 担当教員 | 教員カナ氏名 | 配当年次 | 単位数 |
---|---|---|---|---|---|---|---|---|
総合講座Ⅲ | 2024 | 前期 | 月3 | 経済学部 | 飯島 大邦 | イイジマ ヒロクニ | 1年次配当 | 2 |
科目ナンバー
EC-OM1-033X
履修条件・関連科目等
・経済学の知識を前提としません。応用例を理解する範囲内で、最低限の経済学の考え方を説明します。
・数学の内容は、高校レベルの復習を含みます。
授業で使用する言語
日本語
授業で使用する言語(その他の言語)
授業の概要
<学位授与方針と当該授業科目の関連>
この科目は、現実把握力(経済学の専門知識及び社会・人文・自然科学の知識教養に裏付けられた広い視野に立った柔軟な知性に基づき、現実の経済現象を的確に把握することができる)の修得に関わる科目です。
<概要>
経済学の勉強をこれからはじめるにあたって必要となる数学の知識を、経済学のモデルとあわせて学びます。授業では、経済分析に用いられる数学の事項の経済学的解釈を説明します。また、適宜、テキストの演習問題についても解説します。
科目目的
数学の考え方と経済学のそれを比較して、なぜ経済学を学ぶにあたって、数学の知識が必要であるのかを理解する。
到達目標
さらに、若干の計算力を身に付けることを目標とする。
授業計画と内容
第1回 講義の概要説明
第2回 1次関数(市場均衡,余剰分析)
第3回 2次関数(独占市場、寡占市場)
第4回 指数・対数(複利計算)
第5回 数列(割引現在価値)
第6回 1変数関数の微分
第7回 極大と極小(生産者の利潤最大化)
第8回 ベクトルと内積(消費者の予算制約)
第9回 多変数関数の微分(偏微分、全微分、制約なし最適化)
第10回 ラグランジュ未定乗数法(制約付き最適化)
第11回 ベクトルと行列、行列演算
第12回 計量経済学における行列演算
第13回 確率(期待効用理論)
第14回 経済学の学習における数学の役割について
授業時間外の学修の内容
指定したテキストやレジュメを事前に読み込むこと/授業終了後の課題提出
授業時間外の学修の内容(その他の内容等)
予習:章ごとに、その章の全体における位置づけを確認する。
復習:章ごとに、基本事項および演習問題に疑問が残らないようにする。
他に、授業後の課題としてmanabaの小テストを実施します。
授業時間外の学修に必要な時間数/週
・毎週1回の授業が半期(前期または後期)または通年で完結するもの。1週間あたり4時間の学修を基本とします。
・毎週2回の授業が半期(前期または後期)で完結するもの。1週間あたり8時間の学修を基本とします。
成績評価の方法・基準
種別 | 割合(%) | 評価基準 |
---|---|---|
その他 | 100 | manabaの小テストの正答率で評価します。 |
成績評価の方法・基準(備考)
課題や試験のフィードバック方法
授業時間に限らず、manabaでフィードバックを行う
課題や試験のフィードバック方法(その他の内容等)
アクティブ・ラーニングの実施内容
実施しない
アクティブ・ラーニングの実施内容(その他の内容等)
授業におけるICTの活用方法
実施しない
授業におけるICTの活用方法(その他の内容等)
実務経験のある教員による授業
いいえ
【実務経験有の場合】実務経験の内容
【実務経験有の場合】実務経験に関連する授業内容
テキスト・参考文献等
テキスト:尾山大輔・安田洋祐著『[改訂版]経済学で出る数学ー高校数学からきちんと攻める』日本評論社