シラバス
授業科目名 | 年度 | 学期 | 開講曜日・時限 | 学部・研究科など | 担当教員 | 教員カナ氏名 | 配当年次 | 単位数 |
---|---|---|---|---|---|---|---|---|
経営数学入門 | 2025 | 秋学期 | 金3 | 国際経営学部 | 大坪 弘教 | オオツボ ヒロノリ | 1年次配当 | 2 |
科目ナンバー
GM-OI1-GE02
履修条件・関連科目等
This course has no formal prerequisites, but students are expected to know basic mathematics such as algebra and geometry.
授業で使用する言語
英語
授業で使用する言語(その他の言語)
授業の概要
This course introduces various areas in mathematics suitable for business and economics. Topics include linear and non-linear functions, fundamentals of finance mathematics, systems of linear equations, matrix algebra, and linear programming. Students will learn how these mathematical techniques can be used to solve problems in business and economics.
Introductory Mathematics for Management serves as an introduction to mathematical analysis in business and management. Topics include linear and nonlinear functions, fundamentals of finance mathematics, systems of linear equations, matrix algebra, and linear programming. Students will learn how these mathematical techniques can be used to solve problems in business and management. Examples include:
Question 1: How long will it take a 0,000 investment to be worth 0,000 if it is
monthly compounded at 8% per year?
Question 2: Given an estimated daily demand function for loaves of bread at a bakery
shop, should the owner of the shop increase the price of a loaf of bread in order to increase
daily revenue?
Mathematical models can tackle and solve these questions that arise on a daily basis in the world of business. Mathematics is an important tool to make better decisions in the process of managing a business. This course focuses on topics in finite mathematics. Using the second half of the same textbook, Mathematics for Management (taught by me in the spring semester) features the elements of calculus with emphasis on applications in business and management, such as profit maximization and the price elasticity of demand.
科目目的
This course is intended to introduce students to the fundamental concepts of mathematics
relevant to business and management that do not require calculus.
到達目標
Upon successful completion of this course, students will be able to
1. find relationships among variables and formulate mathematical models.
2. solve various simple and compound interest problems.
3. understand matrices and their applications including solving systems of linear equations.
4. construct linear programming problems for various applications and solve them graphically
and algebraically.
授業計画と内容
(The course contents are subject to change.)
Lecture 1. Course Orientation
About WebAssign
0.2 Exponents and Radicals
0.8 Logarithms
Lecture 2. Mathematical Models that You will See in This Course
1.3 Linear Functions and Models
Lecture 3. 1.4 Linear Regression
Lecture 4. 2.1 Quadratic Functions and Models
2.2 Exponential Functions and Models
Lecture 5. 2.3 The Number e and Exponential Growth and Decay
2.4 Logistic and Logarithmic Functions and Models
Lecture 6. 3.1 Simple Interest
3.2 Compound Interest
Lecture 7. 3.3 Annuities, Loans, Bonds
Lecture 8. 3.3 Annuities, Loans, Bonds (cont'd)
4.1 Systems of Two Equations and Two Unknowns
Lecture 9. 4.2 Using Matrices to Solve Systems of Equations
Lecture 10. 4.3 Applications of Systems of Linear Equations
5.1 Matrix Addition and Scalar Multiplication
Lecture 11. 5.2 Matrix Multiplication
5.3 Matrix Inversion
Lecture 12. 5.3 Matrix Inversion (cont'd)
6.1 Graphing Linear Inequalities
Lecture 13. 6.2 Solving Linear Programming Problems Graphically
Lecture 14. Final Review
授業時間外の学修の内容
指定したテキストやレジュメを事前に読み込むこと/授業終了後の課題提出
授業時間外の学修の内容(その他の内容等)
- 授業前に教科書の該当箇所を必ず読んでくること。
- 各セクション終わりにある演習問題を解くこと。奇数問題の解答は教科書に収録されている。
授業時間外の学修に必要な時間数/週
・毎週1回の授業が半期(前期または後期)または通年で完結するもの。1週間あたり4時間の学修を基本とします。
・毎週2回の授業が半期(前期または後期)で完結するもの。1週間あたり8時間の学修を基本とします。
成績評価の方法・基準
種別 | 割合(%) | 評価基準 |
---|---|---|
期末試験(到達度確認) | 40 | Final Exam |
その他 | 60 | Homework Assignments 50% Quizzes 10% |
成績評価の方法・基準(備考)
1. Quizzes 10%
2. Homework Assignments 50%
3. Final Exam 40%
1. Quizzes
- There will be a quiz after every class.
2. Homework Assignments
- There will be a homework assignment each week.
- All homework assignments will be delivered and graded through the WebAssign system. A brief introduction to the system will be given on the first day of class.
- Do not wait until the last minute to do assignments. Late homework will not be accepted for any reason.
3. Final Exam
- There will be a final exam at the end of the semester.
課題や試験のフィードバック方法
授業時間内で講評・解説の時間を設ける
課題や試験のフィードバック方法(その他の内容等)
アクティブ・ラーニングの実施内容
実施しない
アクティブ・ラーニングの実施内容(その他の内容等)
授業におけるICTの活用方法
実施しない
授業におけるICTの活用方法(その他の内容等)
実務経験のある教員による授業
いいえ
【実務経験有の場合】実務経験の内容
【実務経験有の場合】実務経験に関連する授業内容
テキスト・参考文献等
教科書: Stefan Waner and Steven R. Costenoble. Finite Mathematics and Applied Calculus 8th Edition (WebAssign access code only). Cengage Learning.
教科書の詳細について、第1回目の授業で説明をします。これを聞き逃した場合、WebAssignへの登録作業が遅れ、宿題やクイズの提出ができなくなるなど不利益を被ることになります。履修をまだ決めてなくても、必ず第1回目の授業に出席してください。
その他特記事項
This course focuses on topics in finite mathematics. Mathematics for Management (the course offered in the third semester) features the basic elements of calculus with emphasis on applications in business, economics and statistics, using the second half of the same textbook. Students completing this course are strongly encouraged to take Mathematics for Management next semester.
参考URL
https://www.zweigmedia.com/index.php