シラバス
授業科目名 | 年度 | 学期 | 開講曜日・時限 | 学部・研究科など | 担当教員 | 教員カナ氏名 | 配当年次 | 単位数 |
---|---|---|---|---|---|---|---|---|
卒業研究Ⅰ | 2024 | 前期 | 他 | 理工学部 | 松山 登喜夫 | マツヤマ トキオ | 4年次配当 | 2 |
科目ナンバー
SE-PM4-1A14
履修条件・関連科目等
履修前年度の10月末に説明会を開き、11月に希望をとり振り分ける。
授業で使用する言語
日本語
授業で使用する言語(その他の言語)
授業の概要
数学科専任教員ひとりひとりに、数人づつわりあてられた学生が各教員の指導により、数学に関する理論研究、文献の輪読、計算機による実験などを行う。
科目目的
これまで学んできたことの集大成として、文献を講読し数学の奥深さを認識する。
到達目標
数学における主要な分野である解析学、代数学、幾何学、統計数学、計算数学等の基礎を習得して数理科学の世界を探求する中で、自力で問題を定式化し、新たな知見を創り出す学識と応用力を養い、現代科学技術を支える数理的素養と応用力を習得する。
授業計画と内容
第1週 イントロダクション、卒業研究Ⅰについて
第2週 基礎文献の精読:定義の理解
第3週 定義とその例や反例について討論と質疑
第4週 主定理の理解
第5週 基本補題の証明
第6週 主定理の証明並びに応用
第7週 偏微分方程式との関連
第8週 調和解析との関連
第9週 複素解析との関連
第10週 数値計算による理論の実装
第11週 主定理の変形
第12週 逆問題への応用
第13週 英語の文献の講読,定義と定理の文章の理解
第14週 卒業研究Ⅱに向けた課題に関するまとめ
授業時間外の学修の内容
指定したテキストやレジュメを事前に読み込むこと
授業時間外の学修の内容(その他の内容等)
わりあてられた学生は各教員の指導により、数学に関する理論研究、文献の輪読、計算機による実験などを行うのでそれに対する予習が必要となる。
授業時間外の学修に必要な時間数/週
・卒業論文、または卒業研究の作成等に対して専門分野に関する必要な論文作成、研究指導を行うことを基本とします。
成績評価の方法・基準
種別 | 割合(%) | 評価基準 |
---|---|---|
平常点 | 100 | ゼミにおける発表の準備状況に応じて評価する。 |
成績評価の方法・基準(備考)
初回に提示する成績評価方法による。
課題や試験のフィードバック方法
授業時間内で講評・解説の時間を設ける
課題や試験のフィードバック方法(その他の内容等)
アクティブ・ラーニングの実施内容
実施しない
アクティブ・ラーニングの実施内容(その他の内容等)
授業におけるICTの活用方法
実施しない
授業におけるICTの活用方法(その他の内容等)
実務経験のある教員による授業
いいえ
【実務経験有の場合】実務経験の内容
【実務経験有の場合】実務経験に関連する授業内容
テキスト・参考文献等
テキスト:L.C. Evance著 Partial Differential Equations, AMS
参考書:溝畑茂著 偏微分方程式論、岩波書店
その他特記事項
履修前年度10月末に行われる説明会に欠席すると振り分けに不利になることがあるので、やむをえなく欠席する場合は学習指導委員に事前に連絡すること。